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Kink production in the presence of impurities

T. Dobrowolski
Institute of Physics AP, Podchora¸żych 2, 30-084 Cracow, Poland

~Received 31 October 2001; published 5 March 2002!

The production of kinks during a quench in an overdamped regime off4 model is investigated. Expelling
defects from regions of nonzero force coming from the impurity are predicted.
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I. CONTEXT

The kink-bearingf4 model is very popular because it ha
properties representative of those found in many applicat
in condensed matter physics@1#, nuclear physics@2#, and
biology @3#. The process of the formation of kinks is the mo
interesting aspect of their evolution. The density of kinks
associated with the dynamics of the order parameter. A
consequence of the critical slowing down, the correlat
length diverges; perturbations of the order parameter t
longer to propagate over correlated regions, and therefo
takes longer to reach equilibrium. When the time remain
before the transition equals the equilibrium relaxation tim
the correlation length can no longer adjust quickly enough
follow the changing temperature or the pressure of the s
tem. The same time after a quench the system regains ca
ity to respond for changes of external parameters. The co
lation length at that time~freeze-out time! sets the
characteristic length scale for the initial kink network@4#.
Until now this general picture has been verified in ma
physical and biological contexts.

In spite of the fact that matter is generically populated
impurities, all the results obtained hitherto concern hom
enous and isotropic medium. As is well known, the prese
of impurities and admixtures may completely change pr
erties of the system. For instance, magnetic impurities br
time-reversal invariance and therefore destroy supercon
tivity state @5#. Also nonmagnetic impurities causes pa
breaking, since their potential, in general, does not transf
in the same way as the order parameter@6#. There are also
systems, such as UGe2 and superfluid3He, in which the
superconductivity and superfluidity are mediated by inter
tions with impurities@7#. In case of3He a direct contamina
tion of this substance with any atomic impurities is impo
sible. Instead of this experimentalists use liquid3He to fill
up aerogel that is a matrix of randomly arranged silica fi
ments of nanometer diameter@8#. There is also suspicion tha
impurities are crucial for high-temperature superconduc
ity.

In this paper, we consider topological defect product
~as example of kinks! in the presence of spatial inhomog
neity, such as impurities, admixtures, and even crystal
net. The paper is organized as follows. The Halperin form
is generalized in the follwing section. Section III contains
description of the defect production in the presence o
single impurity. In Sec. IV, we generalize results of Sec.
to describe~in adiabatic approximation! a system with arbi-
trary spatial inhomogeneity. The final section lists remark
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II. GENERALIZATION OF THE HALPERIN FORMULA

The number density of zeros of the scalar field can
calculated as a sum over all pointsxi , defined by the equa
tion f(t,xi)50, and located in the vicinity of the pointx,

n~ t,x!5 lim
L→0

^N&
2L

5 lim
L→0

1

2L K (
i

uf8~ t,xi !u

uf8~ t,xi !u
L . ~1!

If we identify f8 with f and f with g, then the lemma 1
allows are to replace the sum over zeros of the scalar field
the integral over the interval located in the neighborhood
the pointx,

n~x!5 lim
L→0

1

2L K E
x2L

x1L

dx̃uf8~ t,x̃!ud„f~ t,x̃!…L . ~2!

In the zeroL limit, this integral simplifies to the form

n~x!5^sgn@f8~ t,x!#f8~ t,x!d„f~ t,x!…&, ~3!

where we replaced a modulus by the product of the der
tive of the scalar fieldf8 and its sign, i.e.,uf8(t,x)u
5sgn@f8(t,x)#f8(t,x). The integral representation of th
delta functiond„f(t,x)…5(1/2p)*2`

` dseisf(t,x) and the step

function sgn@f(t,x)#5*2`
` (dz/p i )@eizf8(t,x)/z# allows for

reformulation of the last formula to the more convenie
form

n~x!5
1

2p2i
K E

2`

`

dsE
2`

` dz

z
exp@ izf8~ t,x!

1 isf~ t,x!#f8~ t,x!L . ~4!

In the example considered here, the scalar field is a real o
parameter of the one-dimensionalf4 model

] tf~ t,x!5]x
2f~ t,x!2a~ t !f~ t,x!2lf3~ t,x!1h~ t,x!

1D~ t,x!, ~5!

whereh(t,x) can be a temperature Gaussian white noise
even a spatially correlated isotropic noise. A quantityD(t,x)
is a deterministic force representing the existence of imp
ties or the crystalline net in the substance.

For the time sufficiently close to the instant of transitio
f is so small compared to the vacuum value that cubic te
©2002 The American Physical Society36-1
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is negligible and dynamics is governed only by the line
terms. We assume that in a Gaussian approximation the
fluence of the thermal and deterministic forces on the or
parameter is easily distinguished, i.e.,f(t,x)5c(t,x)
1u(t,x), where c(t,x) describes part of the evolutio
caused by a thermal noise andu(t,x) is generated by the
deterministic potential

] tc~ t,x!5]x
2c~ t,x!2a~ t !c~ t,x!1h~ t,x!, ~6!

] tu~ t,x!5]x
2u~ t,x!2a~ t !u~ t,x!1D~ t,x!. ~7!

The number density of zeros of the scalar field under ab
assumptions splits into two parts as

n~x!5
1

2p2i
E

2`

`

dsE
2`

` dz

z
eisu1 izu8^c8eisc1 izc8&

1
1

2p2i
u8E

2`

`

dsE
2`

` dz

z
eisu1 izu8^eisc1 izc8&.

~8!

The significant progress in our calculation can be made w
the help of the Lemmas 3 and 4,

n~x!5
1

2p
^c82&E

2`

`

dsexpF isu2
1

2
s2^c2&G E

2`

`

dz

3expF izu82
1

2
z2^c82&G1

1

2p2i
u8E

2`

`

ds

3expF isu2
1

2
s2^c2&G E

2`

` dz

z

3expF izu82
1

2
z2^c82&G . ~9!

Three of the four integrals are of Gaussian ty
*2`

` dsexp@isu21
2s

2^c2&#5A2p/^c2&e2u2/2^c2&, therefore

n~x!5
1

p
A^c82&

^c2&
e2u2/2^c2&Fe2u82/2^c82&1

u8

A2p^c82&

3E
2`

` dz

p i
expS izu82

1

2
z2^c82& D G . ~10!

The last integral can be expressed via the error function~see
the end of the Appendix!

n~ t,x!5
1

p
A^c82&

^c2&
expF2

u2

2^c2&
2

u82

2^c82&
G

1
u8

A2p^c2&
e2u2/2^c2& ErfS u8

A2^c82&
D . ~11!
03613
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In the case ofD(t,x)50, u(t,x)50 this formula reduces to
the well-known Liu-Mazenko-Halperin formula@9#

n~ t,x!5
1

p
A^c82&

^c2&
. ~12!

III. DEFECT PRODUCTION IN THE PRESENCE
OF A SINGLE IMPURITY

For simplicity we assume an instantaneous quench,
a(t)51 for t,0 anda(t)521 for t.0. In this situation,
time dependence of the chemical potential can be a co
quence of the change of an external pressure. Fourier tr
formation c(t,x)5*2`

` dkeikxc̃(t,k), u(t,x)

5*2`
` dkeikxũ(t,k) allows for significant simplification of

the equations of motion~6! and ~7!

] tc̃~ t,k!1k2c̃~ t,k!1a~ t !c̃~ t,k!5h̃~ t,k!, ~13!

] tũ~ t,k!1k2ũ~ t,k!1a~ t !ũ~ t,k!5D̃~ t,k!. ~14!

The general solution of Eq.~13!,

c̃~ t,k!5E
2`

t

dt1 expH 2E
t1

t

dt2@k21a~ t2!#J h̃~ t1 ,k!,

~15!

together with the white Gaussian noise cumulants

^h̃~ t,k!&50,

^h̃* ~ t,k!h̃~ t8,k8!&5
T

p
d~k2k8!d~ t2t8!, ~16!

provide equal time correlators

^c2&5
1

2
T@~12ErfA2t !e4t1Erfi~A2t !#, ~17!

^c82&5
1

2
TF 2

p
km2~12ErfA2t !e4t1Erfi~A2t !G , ~18!

where Erf and Erfi are, respectively, the error and inve
~blowing! error functions. Cutoffkm in a momentum is in-
evitable because it removes an ultraviolet momentum div
gence, which is caused by a large number of zeros of
field configuration provided by thermal fluctuations on sm
distances. Typical choice ofkm is an inverse of the correla
tion lengthkm51/j.

Let us find the solution of the Eq.~14! in the typical
time-independent, coming from impurity, forceD(x)5A(x
2x0)e2(x2x0)2/a2

,

u~ t,x!5 1
8 Aa3z@exp~2t1 1

4 a2!I11e2~1/4!a2J1#, ~19!

u8~ t,x!5 1
8 Aa3@exp~2t1 1

4 a2!~I12 1
2 z2I2!

1e2~1/4!a2
~J12 1

2 z2J2!#, ~20!
6-2
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KINK PRODUCTION IN THE PRESENCE OF IMPURITIES PHYSICAL REVIEW E65 036136
wherez5x2x0 is relative localization of the potential,

In5E
t1~1/4!a2

`

ds
e2s2(z2/4s)

snAs

and

Jn5E
~1/4!a2

t1~1/4!a2

ds
e2s2(z2/4s)

snAs
.

If we assume slowx dependence of the deterministic forc
D(x), then Eqs.~19! and ~20! can be approximated by th
formulas

u~ t,x!'Aze2z2/a2
et~22e2t!, ~21!

u8~ t,x!'AS 12
2z2

a2 De2z2/a2
et~22e2t!. ~22!

The density of zeros of the Higgs field is given by the ge
eralized Halperin formula~11!.

The kink distribution and considered impurity potent
are presented in Fig. 1.

The characteristic feature of the influence of the inhom
enous potential is expelling defects out of the regions wh
the nonzero deterministic force is present. In the regi

FIG. 1. Kinks are produced mainly in areas where determini
force disappears. Parameters chosen in this plot are the follow
T50.001, A50.002, a520, x0550, t55.5, andkm51. ~a! The
spatial kink distributionn(x). ~b! The deterministic force of the
impurity D(x). ~c! The impurity potentialV(x).
03613
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where the forceD(x) disappears, kinks are produced as
characteristic of the homogenous case number. This re
agrees with conclusions of the papers@10# where a decrease
in the number of produced defects in the presence of a c
stant and homogenous external field is predicted. Depen
on the parameters of the potential the effect of the impu
on defect distribution can be significant or almost unobse
able~see Fig. 2!. Note that the formalism presented here c
also be applied to description of more complicated dist
bances, e.g., shock wave@11#.

IV. AN INFLUENCE OF THE ARBITRARY TIME
INDEPENDENT FORCE ON KINK PRODUCTION

If we consider the slow varying impurity potential the
the first term on the right-hand side of Eq.~7! is unimportant,

] tu~ t,x!1a~ t !u~ t,x!5D~ t,x!. ~23!

The Fourier transformation of this equation,

] tũ~ t,k!1a~ t !ũ~ t,k!5D̃~ t,k!, ~24!

under assumption of the time independence of the inho
geneity force D5D(x), leads to the solutionũ(t,k)
5D̃(k)(2et21). In space coordinates this solution has t
form

u~ t,x!5D~x!~2et21!. ~25!

One could easy check that this solution coincides with
solution ~21! for impurity force of the formD(x)5A(x
2x0)e2(x2x0)2/a2

considered in the preceding section. T
other representative force is a Gaussian typeD(x)
5Ae2(x2x0)2/a2

, the potential for this force represents a kin
of a junction of two mediums. In this case the defects
expelled from the junction~see Fig. 3!. The Fig. 3 show

c
g:

FIG. 2. For the weak impurity its influence on defect producti
can be almost unobservable. Parameters chosen in this plot ar
following: T50.001, A50.002, a54, x0550, t55.5, and km

51. ~a! The spatial distribution of produced kinksn(x). ~b! The
deterministic force of the impurityD(x).
6-3
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T. DOBROWOLSKI PHYSICAL REVIEW E 65 036136
expelling kinks by the junction. In fact, Figs. 1 and 3 pr
sents all generic features of the kink production in the pr
ence of arbitrary inhomogenous medium. Actually, defe
are expelled from regions where a nonzero force is pre
~Fig. 3! and trapped by knots of the functionD(x)—see Fig.
1. This general behavior of defects is not changed by
dimensionality of the system. If defects are produced in
crystalline medium, then the produced defects concent
near the knots of the functionD(x). For instance, for sinu-
soidal functionD(x)5A sin@(x2x0)/a#, kinks form a regular
structure that has period 2 time smaller then the original

V. REMARKS

The impurity disturbs the system only locally@12#. The
main feature of the influence of the inhomogenous poten
is to expel defects out of the regions occupied by the im
rity. Actually, kinks are expelled from the regions where t
deterministic forceD(x) coming from the impurity is differ-
ent from zero. In the regions where the force disappe
kinks are produced as a characteristic of the homogen

FIG. 3. Behavior of the system in the presence of Gaussian-
force D(x). The parameters are identical to those chosen in Fig
A50.002, a520, x0550. ~a! The kink distribution in the neigh-
borhood of the junction.~b! The force in case of the junction.~c!
The potential of the junction.
03613
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case number. Depending on the parameters of the pote
the effect of the impurity on defect distribution can be s
nificant or almost unobservable. In case of the junction,
defects are expelled from the area of contact of two me
ums. The generic features of the kink production in the pr
ence of an arbitrary inhomogenous medium is trapping
fects by knots of the functionD(x). This general behavior
concerns also production of kinks in the crystalline mediu
where the defects concentrate near the knots. It seems
this feature of the defect production does not depend on
number of dimensions. Let us stress that results obtai
here are superb starting point for generalization of this f
malism to higher number of dimensions and gauge symm
ric models.

APPENDIX

This section contains collection of the main results us
in the proof of the Liu-Mazenko-Halperin formula.

Lemma 1. If xi denotes the positions whereg(xi)50 then

E dx f~x!d„g~x!…5(
i

f ~xi !

ug8~xi !u
.

Lemma 2. If we consider a spatially correlated noise, i.e
if

^h̃~ t,k!&50 and ^h̃~ t,k!h̃~ t,k8!&5 f̃ ~k2!d~k2k8!,

then

^c~ t,x!&50, ^c8~ t,x!&50, ^c~ t,x!c8~ t,x!&50.

The proof of this lemma is immediate consequence of
Fourier transformation of the solution given by Eq.~15!.

Lemma 3. If

^h̃~ t,k!&50 and ^h̃~ t,k!h̃~ t,k8!&5 f̃ ~k2!d~k2k8!&,

then

^c2n&5~2n21!!! ^c2&n, ^c82n&5~2n21!!! ^c82&n,

^c2nc82k&5~2n21!!! ~2k21!!! ^c2&n^c82&k,

^c2nc82k11&5^c2n11c82k&5^c2n11c82k11&50.

This lemma is a consequence of the Wick theorem.
Lemma 4.

^eisc&5e2~1/2!s2^c2&.

According to Lemma 3, odd terms in the expansion of t
left-hand side of the above equation are absent and, th
fore,

^eisc&5 (
n50

`
~21!n~s2!n^c2n&

~2n!!
.

If we use identity (2n21)!! 5(2n)!/2nn! then the coeffi-
cients of the expansion can be transformed with the use

e
1.
6-4
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the lemma 3 to the form@1/(2n)! #(21)n(s2)n^c2n&
5(1/2n)@1/(n)! #(21)n(s2)n^c2&n. As a result of summing
up of those coefficients we obtain the right-hand side
Lemma 4.

Lemma 5.

^eisc1 izc8&5expF2
1

2
s2^c2&GexpF2

1

2
z2^c82&G .

The left-hand side of the lemma can be expanded as

^eisc1 izc8&5 (
k50

`
1

k! (
j 50

k S k
j D ~ is!k2 j~ iz! j^ck2 jc8 j&,

and then reformulated with the use of Lemma 3:

^eisc1 izc8&5 (
n50

`

(
r 50

n
1

~n2r !! r ! S 2
1

2
s2^c2& D n2r

3S 2
1

2
z2^c82& D r

.

After renumbering of the series

(
n50

`

(
r 50

n

an2rbr5 (
n50

`

an(
r 50

`

br ,

we obtain the right-hand side of Lemma 5.
Lemma 6.

^c8eisc1 izc8&5 iz^c82&expF2
1

2
s2^c2&GexpF2

1

2
z2^c82&G .
D

s.

p.

ki

03613
f

Lemmas 3 and 4 providêeisc1 izc8&5^eisc&^eizc8&. In the
same way we provê c8eisc1 izc8&5^eisc&^c8eizc8&. The
second term of this product with the help of Lemma 3 tra
forms as follows:

^c8eizc8&52 i
]

]z
^eizc8&52 i

]

]z
expF2

1

2
z2^c82&G .

Explicit differentiation of the last term gives the proper fa
tor on the right-hand side of Lemma 6.

In the end of this section, we evaluate the last integra
the formula~10!. Let us denote

PE
2`

` dz

zi
expF izu82

1

2
z2^c82&G[g~u8!,

then by differentiation with respect tou8 we obtain the
Gaussian integral

dg

du8
5A 2p

^c82&
e2u82/2^c82&.

Finally, after a second integration, a functiong(u8) appears
to be proportional to the error function,

g~u8!5A 2p

^c82&
E

0

u8
dũ8e2ũ82/2^c82&.
ys.
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