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Kink production in the presence of impurities
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The production of kinks during a quench in an overdamped regimg*ahodel is investigated. Expelling
defects from regions of nonzero force coming from the impurity are predicted.
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I. CONTEXT Il. GENERALIZATION OF THE HALPERIN FORMULA

The number density of zeros of the scalar field can be
calculated as a sum over all points, defined by the equa-
fon ¢(t,x;)=0, and located in the vicinity of the point

The kink-bearingp* model is very popular because it has
properties representative of those found in many application
in condensed matter physi¢4], nuclear physicg2], and

biology[3]. The process of the formation of kinks is the most (N) 1 1B (t,%)]
interesting aspect of their evolution. The density of kinks is n(t,x)=lim ——= lim _< —'> (1)
associated with the dynamics of the order parameter. As a Lo 2b o 2L\ T |9/ (1,x)]

consequence of the critical slowing down, the correlation

length diverges; perturbations of the order parameter také we identify ¢’ with f and ¢ with g, then the lemma 1
longer to propagate over correlated regions, and therefore gllows are to replace the sum over zeros of the scalar field by
takes longer to reach equilibrium. When the time remaininghe integral over the interval located in the neighborhood of
before the transition equals the equilibrium relaxation timethe pointx,

the correlation length can no longer adjust quickly enough to 1 L

Iollow the changlng temperature or the pressure of_ the sys- n(x)= lim _<f dx|¢’(t,x)|5(¢(t,x))>. ?)

em. The same time after a quench the system regains capac- Lo 2L\ Jx-L

ity to respond for changes of external parameters. The corre-

lation length at that time(freeze-out timg sets the In the zeroL limit, this integral simplifies to the form
characteristic length scale for the initial kink netwd].

Until now this general picture has been verified in many n(x)=(sgr ¢’ (t,x)]¢"(t,x) 5(¢(t,X))), 3
physical and biological contexts.

In spite of the fact that matter is generically populated bywhere we replaced a modulus by the product of the deriva-
impurities, all the results obtained hitherto concern homogtive of the scalar fieldg¢’ and its sign, i.e.[¢'(t,X)]
enous and isotropic medium. As is well known, the presence sgri ¢'(t,x)]¢’(t,x). The integral representation of the
of impurities and admixtures may completely change propdelta functiond(¢(t,x))=(1/2m) [ .ds€5*(") and the step
erties of the system. For instance, magnetic impurities breatunction sghe(t,x)]=/".(dz/ 7 i)[e‘zd"("x)/z] allows for
time-reversal invariance and therefore destroy supercondugeformulation of the last formula to the more convenient
tivity state [5]. Also nonmagnetic impurities causes pair form
breaking, since their potential, in general, does not transform
in the same way as the order param¢@r There are also 1 % © dz
systems, such as Ugeand superfluid®He, in which the n(x)=—2_<f dsf — exdize’ (t,x)
superconductivity and superfluidity are mediated by interac- 27\ J - o
tions with impurities[7]. In case of*He a direct contamina-
tion of this substance with any atomic impurities is impos- +is¢(t,x)]¢’(t,x)>. 4
sible. Instead of this experimentalists use ligdide to fill
umper?tes rg??];tnh;:]'estea: (rjri]:m:t[gé.r‘?ﬂgroen;Lya?sr,:)aQSSGSicsiglr??h;"? ‘In the example consider_ed he_re, t?e scalar field is a real order
impurities are crucial for high-temperature superconductiv-p"’lr"’lmeter of the one-dimensionat model
ity. _ 2 3

yIn this paper, we consider topological defect production drp(t,X) = 95 p(t,x) —a(t) d(t,x) =N ¢>(t,X) + n(t,Xx)

(as example of kinKsin the presence of spatial inhomoge- +D(t,X), (5)
neity, such as impurities, admixtures, and even crystalline

net. The paper is organized as follows. The Halperin formulavhere 7(t,x) can be a temperature Gaussian white noise or
is generalized in the follwing section. Section Il contains aeven a spatially correlated isotropic noise. A quariiy,x)
description of the defect production in the presence of as a deterministic force representing the existence of impuri-
single impurity. In Sec. IV, we generalize results of Sec. lllties or the crystalline net in the substance.
to describg(in adiabatic approximationa system with arbi- For the time sufficiently close to the instant of transition,
trary spatial inhomogeneity. The final section lists remarks. ¢ is so small compared to the vacuum value that cubic term
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is negligible and dynamics is governed only by the linearin the case ofD>(t,x)=0, u(t,x) =0 this formula reduces to
terms. We assume that in a Gaussian approximation the irthe well-known Liu-Mazenko-Halperin formul®]

fluence of the thermal and deterministic forces on the order

parameter is easily distinguished, i.ed(t,x)=#(t,x)
+u(t,x), where (t,x) describes part of the evolution
caused by a thermal noise andt,x) is generated by the
deterministic potential

(%) = 2(t,x) —a(t) g(t,x) + 7(t,x), (6)

au(t,x)=d2u(t,x)—a(t)u(t,x)+D(t,x). 7)

1 12
n(t,x)=—\/<dj2>. (12
™ N (Y)
I1l. DEFECT PRODUCTION IN THE PRESENCE
OF A SINGLE IMPURITY

For simplicity we assume an instantaneous quench, i.e.,
a(t)=1 for t<0 anda(t)=—1 for t>0. In this situation,
time dependence of the chemical potential can be a conse-

The number density of zeros of the scalar field under abovgence of the change of an external pressure. Fourier trans-

assumptions splits into two parts as

1 (= ©dz ., o
I'I(X)Z 27T2i fﬁxdsfiw?emuﬂzu <wrels¢z+|z:,//>

1
+—2_LI

/foc deoc d_zeisu+izu’<eis¢+iz:/f’>
274 o J-=Z .

®)

The significant progress in our calculation can be made with

the help of the Lemmas 3 and 4,
n(x)=i(zp’2>fc dsexpisu— 15:2(1,02> jw dz
2w — 2 .

X exp

-' ! 1 2<l/l,2> + 1 /foo d
1ZU — 2 —Uu S
] 2 27 —o

» dz

X exg isu— %52@//2)}[ —

—w Z

X exp

9

_izu’—%zzﬁp’z)}.

Three of the four integrals are of Gaussian type

* . dsexdisu— X yA=\2al(gZ)e "% therefore

!

1 <¢’2> 2 2 12 12 u
n(x):— —e7U 12(y >|:eu 12(4 >+—
™V (y) v2m(y'?)

» dz

xf_mgexp(izu’—;zzﬁp’z)”.

The last integral can be expressed via the error fundsee
the end of the Append)x

S Erf( S
V2(y'?)

(10

2 12

1
n(t,x)=—
a

u u

28 2y

)
(V)

!

u

+—
v2m(y?)

) . (1)

formation P(t,x)=J7 _ dke <yt k), u(t,x)
=[*_dkd"u(t,k) allows for significant simplification of
the equations of motio6) and (7)

Gt ) +KZP(LK) +at) Pt k) =7(tk), (13
au(t,k)+k2u(t,k)+atu(t,k)=D(t,k). (14

The general solution of Eq13),

l//(t,k):fwdtleXD{—ft dtz[k2+a(tz)]’n(t1,k),

(15
together with the white Gaussian noise cumulants
(n(t,k)=0,

% Y T ' ’

(Rt k)= —sk—k)st-t), (16
provide equal time correlators

1
(v9)=5TI(L-Erfy20e*+Erfi(V20], (17

2
<¢72>:%T ;km—(l—Erf\/z)em'i‘ Erf'( \/Z) ’ (18)

where Erf and Erfi are, respectively, the error and inverse
(blowing) error functions. Cutofk,, in a momentum is in-
evitable because it removes an ultraviolet momentum diver-
gence, which is caused by a large number of zeros of the
field configuration provided by thermal fluctuations on small
distances. Typical choice d&f,, is an inverse of the correla-
tion lengthk,,=1/¢.

Let us find the solution of the Eql14) in the typical
time-independent, coming from impurity, ford2(x)=.A(x
—xo)e_(x_xo)zmz,

u(t,x) =L Aal exp2t+ L)+ e M 7], (19
u’(t,x)= 3 Aa’[exp(2t+ : a?) (I, — $7°7,)

te W7 327, (20
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FIG. 1. Kinks are produced mainly in areas where deterministi
force disappears. Parameters chosen in this plot are the followin
T=0.001, .4=0.002, =20, x,=50, t=5.5, andk,,=1. (a) The
spatial kink distributionn(x). (b) The deterministic force of the
impurity D(x). (c) The impurity potentiaM(x).

wherez=X— Xy is relative localization of the potential,

j ds
t+ (1/4)a?

e—s—(22/4s)

s"s

and

e s~ (Z2/4s)

t+ (L/d)a?
ds————.
(1/4)a? s”\/§
If we assume slow dependence of the deterministic force

D(x), then Egs.(19) and (20) can be approximated by the
formulas

u(t,x)~Aze Zle’el(2—eY), (21)
2 2
u’(t,x)~A( 1— ;Zf)e-zzfazet(z—e-t). (22)

The density of zeros of the Higgs field is given by the gen
eralized Halperin formuldl11).

The kink distribution and considered impurity potential
are presented in Fig. 1.
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FIG. 2. For the weak impurity its influence on defect production
can be almost unobservable. Parameters chosen in this plot are the
following: T=0.001, A=0.002, =4, x,=50, t=5.5, andk,
=1. (@) The spatial distribution of produced kinkgx). (b) The
deterministic force of the impuritfP(x).

where the forceD(x) disappears, kinks are produced as a
characteristic of the homogenous case number. This result

Qagrees with conclusions of the papgt§] where a decrease

n the number of produced defects in the presence of a con-
tant and homogenous external field is predicted. Depending
on the parameters of the potential the effect of the impurity

on defect distribution can be significant or almost unobserv-

able(see Fig. 2 Note that the formalism presented here can

also be applied to description of more complicated distur-

bances, e.g., shock way#1].

IV. AN INFLUENCE OF THE ARBITRARY TIME
INDEPENDENT FORCE ON KINK PRODUCTION

If we consider the slow varying impurity potential then
the first term on the right-hand side of K@) is unimportant,

du(t,x)+a(t)u(t,x) =D(t,x). (23
The Fourier transformation of this equation,
au(t,k)+a(t)u(t,k)=D(t,k), (24)

under assumption of the time independence of the inhomo-
geneity force D=D(x), leads to the solutionu(t,k)

=D(k)(2e'-1). In space coordinates this solution has the
form

u(t,x)=D(x)(2e'—1). (25)

One could easy check that this solution coincides with the

solution (21) for impurity force of the formD(x)=.A(x

—xo)e” *0%* considered in the preceding section. The
other representative force is a Gaussian typ¥x)

The characteristic feature of the influence of the inhomog= Ae*(xf"o)z’“z, the potential for this force represents a kind
enous potential is expelling defects out of the regions wheref a junction of two mediums. In this case the defects are
the nonzero deterministic force is present. In the regiongxpelled from the junctior(see Fig. 3 The Fig. 3 show
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0 06895 case number. Depending on the parameters of the potential
' the effect of the impurity on defect distribution can be sig-
0. 363223 H{JC) nificant or almost unobservable. In case of the junction, the
. RACHACES T defects are expelled from the area of contact of two medi-
0.068875 ums. The generic features of the kink production in the pres-
0.06885 ence of an arbitrary inhomogenous medium is trapping de-
0. 068825 fects by knots of the functio(x). This general behavior
0 0688 @ concerns also production of kinks in the crystalline medium
0 Nea775 X where the defects concentrate near the knots. It seems that
' fe 0 20 40 &0 80 100 this feature of the defect production does not depend on the
number of dimensions. Let us stress that results obtained
0. 0004 here are superb starting point for generalization of this for-
D malism to higher number of dimensions and gauge symmet-
o onoz| 6O ric models.
0.0002 APPENDIX
0.0001 This section contains collection of the main results used
0 in the proof of the Liu-Mazenko-Halperin formula.
(b) X Lemma 1If x; denotes the positions whegéx;) =0 then
0 20 40 &0 30 100 £(x))
I
| | axtoos@on-3
V(x) g ()]
Lemma 2 If we consider a spatially correlated noise, i.e.,
if
(n(tk))=0 and ((t,k) 7(t,k))=T(k?)s(k—k'),
© then
X
0 20 40 &0 &0 100 (#(t,x))=0, (¥'(t,x))=0, (P(t,x)¢'(t,x))=0.

FIG. 3. Behavior of the system in the presence of Gaussian-typdhe proof of this lemma is immediate consequence of the

force D(x). The parameters are identical to those chosen in Fig. 1Fourier transformation of the solution given by E5).

A=0.002, =20, Xq=50. () The kink distribution in the neigh- Lemma 3If
borhood of the junction(b) The force in case of the junctiofic)
The potential of the junction. (n(t,k)=0 and (n(t,k)7(t,k"))= f(k?)o(k— k")),

expelling kinks by the junction. In fact, Figs. 1 and 3 pre-then

sents all generic features of the kink production in the pres- , , . on Lo N

ence of arbitrary inhomogenous medium. Actually, defects (F)y=2n=11 A" (P T)=2n=DI )",

are expelled from regions where a nonzero force is present 20, 12Ky — 1 AN {2\ 1 20K

(Fig. 3 and trapped by knots of the functid(x)—see Fig. (P ™) = (2n= D1 (2k= U)W

1. This general behavior of defects is not changed by the 2n 12kt 1\ /2041 r2ky _ 7 r2n+ 12k 1y

dimensionality of the system. If defects are produced in the (o= )=(W vy =(y v )=0.

crystalline medium, then the produced defects concentratgnis lemma is a consequence of the Wick theorem.

near the knots of the functioP(x). For instance, for sinu- Lemma 4

soidal functionD(x) = A sin (x—xXg)/«], kinks form a regular

structure that has period 2 time smaller then the original net. <eisw>:ef(1/2)sz<¢2>.

According to Lemma 3, odd terms in the expansion of the

left-hand side of the above equation are absent and, there-
The impurity disturbs the system only locall§2]. The fore,

main feature of the influence of the inhomogenous potential

is to expel defects out of the regions occupied by the impu-

rity. Actually, kinks are expelled from the regions where the

deterministic forceD(x) coming from the impurity is differ-

ent from zero. In the regions where the force disappeartf we use identity (h—1)!!=(2n)!/2"n! then the coeffi-
kinks are produced as a characteristic of the homogenousents of the expansion can be transformed with the use of

V. REMARKS

< * (_1)n(52)n<l/,2n>
(=2~ mi
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the lemma 3 to the form[1/(2n)!](—1)"(s?)™(4°")
= (U2 1/(n)! 1(—1)"(s?)™(¢?)". As a result of summing
up of those coefficients we obtain the right-hand side o

Lemma 4.
Lemma 5

(ei5¢+‘2¢'>=exp{ _ %SZ< l/,Z) ex;{ _ %22<I/l12> )

The left-hand side of the lemma can be expanded as

o 1 k
is¢+iz:// _
(e =2 i 2

and then reformulated with the use of Lemma 3:

I T (T

—r)lrl

1 r
- 5220//'2)) :
After renumbering of the series
o0 n 2] o0
2 E an—rerE anz b,
n=0r=0 n=0 r=0

we obtain the right-hand side of Lemma 5.
Lemma 6

o 1
<¢//els¢/+|z¢ >=iZ<lﬁ'2>eX[{ _ ESZ<¢2>

) is)<(iz) (y*Ty'l),

exp{—%zz(zp’%}

PHYSICAL REVIEW B5 036136

Lemmas 3 and 4 providée's/*i2¢"y=(e's¥}(e/Z¥") In the
same way we provey’ eSUHIZYy = (elSV) (' ey, The

second term of this product with the help of Lemma 3 trans-
forms as follows:

o 1
(p'e?Vy=—i i%ex;{—iz%ﬂz)}.

J
7 ety = —
25 (&%)

Explicit differentiation of the last term gives the proper fac-
tor on the right-hand side of Lemma 6.

In the end of this section, we evaluate the last integral in
the formula(10). Let us denote

= d 1
Pf mz—izexr{izu’—Ezz(lp’z)}zg(u’),

then by differentiation with respect ta’ we obtain the
Gaussian integral

dg 27
- = e
du’ <¢/2>

U’2/2<¢’2>.

Finally, after a second integration, a functigfu’) appears
to be proportional to the error function,

g(u)=1/ 2m f“'dﬁ'e—ﬁ’zfzw’z%
(2 )o
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